我们介绍了精致的,这是一种有效的端到端实体链接模型,该模型使用精细的实体类型和实体描述来执行链接。该模型执行提及的检测,细粒实体键入以及单个向前传球中文档中所有提及的实体歧义,使其比现有方法快60倍以上。精制还超过了标准实体链接数据集的最先进性能,平均比3.7 F1。该模型能够将其推广到大规模的知识库,例如Wikidata(其实体是Wikipedia的15倍)和零拍的实体链接。速度,准确性和规模的结合使精制成为从网络规模数据集中提取实体的有效且具有成本效益的系统,该数据集已成功部署该模型。我们的代码和预培训模型可在https://github.com/alexa/refined上找到
translated by 谷歌翻译
实体歧义(ED)的最新工作通常忽略了结构性知识库(KB)事实,而是依靠有限的KB信息子集,例如实体描述或类型。这限制了实体可以消除歧义的环境范围。为了允许使用所有KB事实以及描述和类型,我们介绍了一个ED模型,该模型通过以完全可区分的方式通过符号知识基础来链接实体。我们的型号平均超过了六个良好的ED数据集的最新基线。通过允许访问所有KB信息,我们的模型较少依赖于基于流行的实体先验,并提高了具有挑战性的Shadowlink数据集(强调不频繁和模棱两可的实体)的性能12.7 F1。
translated by 谷歌翻译
While deeper convolutional networks are needed to achieve maximum accuracy in visual perception tasks, for many inputs shallower networks are sufficient. We exploit this observation by learning to skip convolutional layers on a per-input basis. We introduce SkipNet, a modified residual network, that uses a gating network to selectively skip convolutional blocks based on the activations of the previous layer. We formulate the dynamic skipping problem in the context of sequential decision making and propose a hybrid learning algorithm that combines supervised learning and reinforcement learning to address the challenges of non-differentiable skipping decisions. We show SkipNet reduces computation by 30 90% while preserving the accuracy of the original model on four benchmark datasets and outperforms the state-of-the-art dynamic networks and static compression methods. We also qualitatively evaluate the gating policy to reveal a relationship between image scale and saliency and the number of layers skipped.
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译
As various city agencies and mobility operators navigate toward innovative mobility solutions, there is a need for strategic flexibility in well-timed investment decisions in the design and timing of mobility service regions, i.e. cast as "real options" (RO). This problem becomes increasingly challenging with multiple interacting RO in such investments. We propose a scalable machine learning based RO framework for multi-period sequential service region design & timing problem for mobility-on-demand services, framed as a Markov decision process with non-stationary stochastic variables. A value function approximation policy from literature uses multi-option least squares Monte Carlo simulation to get a policy value for a set of interdependent investment decisions as deferral options (CR policy). The goal is to determine the optimal selection and timing of a set of zones to include in a service region. However, prior work required explicit enumeration of all possible sequences of investments. To address the combinatorial complexity of such enumeration, we propose a new variant "deep" RO policy using an efficient recurrent neural network (RNN) based ML method (CR-RNN policy) to sample sequences to forego the need for enumeration, making network design & timing policy tractable for large scale implementation. Experiments on multiple service region scenarios in New York City (NYC) shows the proposed policy substantially reduces the overall computational cost (time reduction for RO evaluation of > 90% of total investment sequences is achieved), with zero to near-zero gap compared to the benchmark. A case study of sequential service region design for expansion of MoD services in Brooklyn, NYC show that using the CR-RNN policy to determine optimal RO investment strategy yields a similar performance (0.5% within CR policy value) with significantly reduced computation time (about 5.4 times faster).
translated by 谷歌翻译
The combination of conduct, emotion, motivation, and thinking is referred to as personality. To shortlist candidates more effectively, many organizations rely on personality predictions. The firm can hire or pick the best candidate for the desired job description by grouping applicants based on the necessary personality preferences. A model is created to identify applicants' personality types so that employers may find qualified candidates by examining a person's facial expression, speech intonation, and resume. Additionally, the paper emphasises detecting the changes in employee behaviour. Employee attitudes and behaviour towards each set of questions are being examined and analysed. Here, the K-Modes clustering method is used to predict employee well-being, including job pressure, the working environment, and relationships with peers, utilizing the OCEAN Model and the CNN algorithm in the AVI-AI administrative system. Findings imply that AVIs can be used for efficient candidate screening with an AI decision agent. The study of the specific field is beyond the current explorations and needed to be expanded with deeper models and new configurations that can patch extremely complex operations.
translated by 谷歌翻译
Correct scoring of a driver's risk is of great significance to auto insurance companies. While the current tools used in this field have been proven in practice to be quite efficient and beneficial, we argue that there is still a lot of room for development and improvement in the auto insurance risk estimation process. To this end, we develop a framework based on a combination of a neural network together with a dimensionality reduction technique t-SNE (t-distributed stochastic neighbour embedding). This enables us to visually represent the complex structure of the risk as a two-dimensional surface, while still preserving the properties of the local region in the features space. The obtained results, which are based on real insurance data, reveal a clear contrast between the high and low risk policy holders, and indeed improve upon the actual risk estimation performed by the insurer. Due to the visual accessibility of the portfolio in this approach, we argue that this framework could be advantageous to the auto insurer, both as a main risk prediction tool and as an additional validation stage in other approaches.
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
We present Azimuth, an open-source and easy-to-use tool to perform error analysis for text classification. Compared to other stages of the ML development cycle, such as model training and hyper-parameter tuning, the process and tooling for the error analysis stage are less mature. However, this stage is critical for the development of reliable and trustworthy AI systems. To make error analysis more systematic, we propose an approach comprising dataset analysis and model quality assessment, which Azimuth facilitates. We aim to help AI practitioners discover and address areas where the model does not generalize by leveraging and integrating a range of ML techniques, such as saliency maps, similarity, uncertainty, and behavioral analyses, all in one tool. Our code and documentation are available at github.com/servicenow/azimuth.
translated by 谷歌翻译
Machine learning (ML) has found broad applicability in quantum information science in topics as diverse as experimental design, state classification, and even studies on quantum foundations. Here, we experimentally realize an approach for defining custom prior distributions that are automatically tuned using ML for use with Bayesian quantum state estimation methods. Previously, researchers have looked to Bayesian quantum state tomography due to its unique advantages like natural uncertainty quantification, the return of reliable estimates under any measurement condition, and minimal mean-squared error. However, practical challenges related to long computation times and conceptual issues concerning how to incorporate prior knowledge most suitably can overshadow these benefits. Using both simulated and experimental measurement results, we demonstrate that ML-defined prior distributions reduce net convergence times and provide a natural way to incorporate both implicit and explicit information directly into the prior distribution. These results constitute a promising path toward practical implementations of Bayesian quantum state tomography.
translated by 谷歌翻译